About one non linear recurrence of the third order Sequences

https://www.linkedin.com/groups/8313943/8313943-6437179333101649921 Let k be an integer greater than 1. The sequence $(a_n)_{n\geq 0}$ is defined by $a_0 = 4, a_1 = a_2 = \left(k^2 - 2\right)^2$ and $a_{n+1} = a_n a_{n-1} - 2(a_n + a_{n-1}) - a_{n-2} + 8$ for $n \ge 2$. Prove that $2 + \sqrt{a_n}$ is a perfect square all $n \in \mathbb{N}$. Solution by Arkady Alt, San Jose, California, USA. Since $a_{n+2} = a_{n+1}a_n - 2(a_{n+1} + a_n) - a_{n-1} + 8 \iff$ (1) $a_{n+2} - 2 = (a_{n+1} - 2)(a_n - 2) - (a_{n-1} - 2)$ then for $b_n := a_n - 2$ we obtain recurrence $b_{n+2} = b_{n+1}b_n - b_{n-1}, n \in \mathbb{N}$ with $b_0 = 2, b_1 = b_2 = (k^2 - 2)^2 - 2$. (2)Lemma. Let sequense $(P_n)_{n>0}$ be determined by the recurrence (3) $P_{n+2} = P_{n+1}P_n - P_{n-1}, n \in \mathbb{N}$ with $P_0 = 2, P_1 = P_2 = x > 2$, and let (f_n) be sequence of Fibonacci numbers ($f_{n+1} = f_n + f_{n-1}, n \in \mathbb{N}$ and $f_0 = 1, f_1 = 1$). Then requirence (3) determine polynomial $P_n(x)$ of x, of degree f_n with integer coefficients, such that $P_n(\cosh(t)) = 2\cosh(f_n t)$, where $t := \cosh^{-1}\left(\frac{x}{2}\right)$ **Proof.** Since $2 \cosh(f_0 t) = 2 \cosh(0) = 2, 2 \cosh(f_1 t) = 2 \cosh(f_2 t) = 2 \cosh(f_2 t)$ $2\cosh t = x$ and $2\cosh(f_{n+1}t) \cdot 2\cosh(f_nt) - 2\cosh(f_{n-t}t) =$ $4\cosh\left(f_{n+1}t\right)\cosh\left(f_{n}t\right) - 2\cosh\left(f_{n-t}t\right) =$ $2\left(\cosh\left(f_{n+1}t + f_nt\right) + \cosh\left(f_{n+1}t - f_nt\right)\right) - 2\cosh\left(f_{n-t}t\right) =$ $2\cosh(f_{n+2}t) + 2\cosh(f_{n-1}t) - 2\cosh(f_{n-1}t) = 2\cosh(f_{n+2}t)$ then by Math Induction we obtain that $P_n(x) = 2 \cosh\left(f_{n+2} \cdot \cosh^{-1}\left(\frac{x}{2}\right)\right)$. Coming back to recurrence (2) and denoting $t := \cosh^{-1}\left(\frac{k}{2}\right)$ we obtain that $(k^{2}-2)^{2}-2 = (4\cosh^{2} t - 2)^{2}-2 = 4(2\cosh^{2} t - 1)^{2}-2 = 4\cosh^{2} 2t - 2 = 4\cosh^{2} 2t 2(2\cosh^2 2t - 1) = 2\cosh 4t$ and then accordingly to Lemma $b_n = 2\cosh(4f_n t)$. Therefore, $a_n = 2 \cosh(4f_n t) + 2 = 4 \cosh^2(2f_n t)$ and since $\cosh(x) > 0$ for any x then $2 + \sqrt{a_n} = 2 + 2\cosh(2f_n t) = 2(1 + \cosh(2f_n t)) =$ $4\cosh^2(f_n t) = (2\cosh(f_n t))^2 = (P_n(k))^2.$

©1985-2018 Arkady Alt