About one non linear recurrence of the third order Sequences

https://www.linkedin.com/groups/8313943/8313943-6437179333101649921
Let k be an integer greater than 1 . The sequence $\left(a_{n}\right)_{n \geq 0}$ is defined by

$$
\begin{aligned}
& a_{0}=4, a_{1}=a_{2}=\left(k^{2}-2\right)^{2} \text { and } \\
& a_{n+1}=a_{n} a_{n-1}-2\left(a_{n}+a_{n-1}\right)-a_{n-2}+8 \text { for } n \geq 2
\end{aligned}
$$

Prove that $2+\sqrt{a_{n}}$ is a perfect square all $n \in \mathbb{N}$.

Solution by Arkady Alt, San Jose, California, USA.

Since

$$
\text { (1) } \quad \begin{aligned}
& a_{n+2}=a_{n+1} a_{n}-2\left(a_{n+1}+a_{n}\right)-a_{n-1}+8 \Longleftrightarrow \\
& a_{n+2}-2=\left(a_{n+1}-2\right)\left(a_{n}-2\right)-\left(a_{n-1}-2\right)
\end{aligned}
$$

then for $b_{n}:=a_{n}-2$ we obtain recurrence
(2) $b_{n+2}=b_{n+1} b_{n}-b_{n-1}, n \in \mathbb{N}$ with $b_{0}=2, b_{1}=b_{2}=\left(k^{2}-2\right)^{2}-2$.

Lemma.
Let sequense $\left(P_{n}\right)_{n>0}$ be determined by the recurrence
(3) $P_{n+2}=P_{n+1} P_{n}-P_{n-1}, n \in \mathbb{N}$ with $P_{0}=2, P_{1}=P_{2}=x>2$, and let $\left(f_{n}\right)$ be sequence of Fibonacci numbers $\left(f_{n+1}=f_{n}+f_{n-1}, n \in \mathbb{N}\right.$ and $f_{0}=1, f_{1}=1$).
Then requrrence (3) determine polynomial $P_{n}(x)$ of x, of degree f_{n} with integer coefficients, such that $P_{n}(\cosh (t))=2 \cosh \left(f_{n} t\right)$, where $t:=\cosh ^{-1}\left(\frac{x}{2}\right)$

Proof.

Since $2 \cosh \left(f_{0} t\right)=2 \cosh (0)=2,2 \cosh \left(f_{1} t\right)=2 \cosh \left(f_{2} t\right)=$

$$
2 \cosh t=x \text { and } 2 \cosh \left(f_{n+1} t\right) \cdot 2 \cosh \left(f_{n} t\right)-2 \cosh \left(f_{n-t} t\right)=
$$

$$
4 \cosh \left(f_{n+1} t\right) \cosh \left(f_{n} t\right)-2 \cosh \left(f_{n-t} t\right)=
$$

$2\left(\cosh \left(f_{n+1} t+f_{n} t\right)+\cosh \left(f_{n+1} t-f_{n} t\right)\right)-2 \cosh \left(f_{n-t} t\right)=$
$2 \cosh \left(f_{n+2} t\right)+2 \cosh \left(f_{n-1} t\right)-2 \cosh \left(f_{n-t} t\right)=2 \cosh \left(f_{n+2} t\right)$
then by Math Induction we obtain
that $P_{n}(x)=2 \cosh \left(f_{n+2} \cdot \cosh ^{-1}\left(\frac{x}{2}\right)\right)$.
Coming back to recurrence (2) and denoting $t:=\cosh ^{-1}\left(\frac{k}{2}\right)$ we obtain that
$\left(k^{2}-2\right)^{2}-2=\left(4 \cosh ^{2} t-2\right)^{2}-2=4\left(2 \cosh ^{2} t-1\right)^{2}-2=4 \cosh ^{2} 2 t-2=$ $2\left(2 \cosh ^{2} 2 t-1\right)=2 \cosh 4 t$ and then accordingly to Lemma $b_{n}=2 \cosh \left(4 f_{n} t\right)$. Therefore, $a_{n}=2 \cosh \left(4 f_{n} t\right)+2=4 \cosh ^{2}\left(2 f_{n} t\right)$ and since $\cosh (x)>0$ for any x then $2+\sqrt{a_{n}}=2+2 \cosh \left(2 f_{n} t\right)=2\left(1+\cosh \left(2 f_{n} t\right)\right)=$ $4 \cosh ^{2}\left(f_{n} t\right)=\left(2 \cosh \left(f_{n} t\right)\right)^{2}=\left(P_{n}(k)\right)^{2}$.

